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Described herein is a mild and general one-pot procedure for the conversion of cyanoethyl amides to cya-
noethyl-protected tetrazoles with azidotrimethylsilane via the intermediacy of imidoyl chlorides gener-
ated in situ with phosphorus pentachloride. This synthetic sequence works well with sterically hindered
amides and is compatible with acid sensitive functionality.

� 2010 Elsevier Ltd. All rights reserved.
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Scheme 1. Tetrazole synthesis via imidoyl chlorides.
The employment of tetrazoles as isosteres of the carboxylic acid
functionality has long been of interest to the medicinal chemistry
community.1 Tetrazoles have similar physicochemical properties
to carboxylates, such as pKa (Fig. 1) and aqueous solubility, yet
are larger and tend to have greater lipophilicity.1c Tetrazoles can
exhibit enhanced receptor binding compared to carboxylates,
which has been attributed to their ability to form two hydrogen
bonds.1a,d–g The successful replacement of carboxylates with tetra-
zoles in marketed drugs1a has driven the search for new methods
for their synthesis.

Tetrazoles are commonly formed from nitriles and an azide
source via a 1,3-dipolar cycloaddition.1a,b Amines, amides and
aldehydes have also been employed, though to a lesser extent. Pro-
gress has been made in synthesizing tetrazoles without the use of
toxic and/or explosive reagents such as azidotrimethylstannane or
hydrazoic acid through the utilization of safer alternatives such as
azidotrimethylsilane (TMS-N3).1a

A general and efficient route to protected tetrazoles was re-
quired as part of a structure–activity relationship survey in a
medicinal chemistry program. Tetrazoles protected by a cyano-
ethyl group were determined to be essential due to the mild con-
ditions allowed for deprotection (aqueous hydroxide, rt).2 One of
the earliest methods for tetrazole formation involved the conver-
sion of a secondary amide 2 to the corresponding imidoyl chloride
3 followed by treatment with sodium azide (Scheme 1, X = Na)3a,b

or hydrazoic acid (Scheme 1, X = H)3c,d to afford the desired tetra-
zole 4. More recently, the employment of azidotrimethylsilane in
conjunction with imidoyl chlorides has been reported for the gen-
eration of N-alkyl and N-aryl tetrazoles.4

One of the major drawbacks of accessing tetrazoles from amides
via the intermediacy of imidoyl chlorides is the generation of
ll rights reserved.
hydrogen chloride as a by-product during imidoyl chloride forma-
tion. The hydrogen chloride can have obvious deleterious effects on
acid sensitive functionality. For example, attempts to convert cya-
noethyl amide 2a to tetrazole 4a using phosphorous pentachloride
(1.5 equiv) and azidotrimethylsilane (4 equiv) successively at re-
duced or elevated temperature (40 �C) produced no desired prod-
uct (Scheme 2).4 At reduced temperature (�5 �C) amide 5 and
tetrazole 6 were isolated in 65% and 23%, respectively (Table 1).
At elevated temperature (40 �C), only amide 5 was produced in
71% yield. When the experiment at elevated temperature was re-
peated with excess pyridine present, the desired tetrazole 4a was
provided in good yield (83%).5

To determine the general applicability of this one-pot synthetic
sequence, a series of aliphatic, aromatic, and hetero-aromatic cya-
noethyl amides were prepared and subjected to the same tetra-
zole-forming reaction conditions.6 The prerequisite cyanoethyl
amides 2 were synthesized from the corresponding carboxylic
acids 1.7,8 Treatment of the carboxylic acids with Vilsmeier reagent
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Scheme 2. Effect of pyridine on formation of tetrazole 4a.

Table 1
Effect of pyridine on formation of tetrazole 4a

Temperature (�C) Additive % Yield 4a % Yield 5 % Yield 6

�5 None 0 65 23
40 None 0 71 0
40 Pyridine 83 0 0
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7 resulted in clean and efficient acid chloride formation.9 Addition
of excess 3-aminopropanenitrile provided the desired amides 2a–
h in good to excellent yield (Table 2).
Table 2
Synthesis of cyanoethyl amides 2 and tetrazoles 4

R OH

O

N

Cl

i) CH2Cl2, r.t.

ii) 0 oC to r.t.

H2N
CN

1 7

R N

O

2

Entry R % Yield 2

1
SEMO

86
(2a)

2
NF

F F
92
(2b)

3 O
O

98
(2c)

4
NHBoc

95
(2d)

5

Cl

95
(2e)

6

O

98
(2f)

7

Ar

Ar = 4-NO2-phenyl

99
(2g)

8

Cl

99
(2h)

a Method A: (i) PCl5, pyridine, CH2Cl2, reflux; (ii) TMS-N3, rt.
b Method B: (i) PCl5, CH2Cl2, reflux; (ii) TMS-N3, rt.
c Method C: diethylazodicarboxylate, triphenylphosphine, azidotrimethylsilane, THF,
Conversion of amides 2a–h to the corresponding tetrazoles 4a–
h using the previously described conditions proceeded efficiently
(Table 2, entries 1–8).10,11 The yield of the tetrazoles was reason-
ably consistent (73–86%) and the nature of the R-group appeared
to have little impact. Sterically hindered aliphatic amides 2e–h
were converted as efficiently as their aromatic counterparts
(2a–d). Functional groups such as methoxy and nitro, as well as
SEM, Boc, and acetal protecting groups were unaffected by the
transformation.

To further explore the ability of pyridine to protect acid sensi-
tive functionality in this transformation, the reactions of amides
R

N N
N

N

i) PCl5, pyridine
CH2Cl2, reflux

ii) TMS-N3, r.t.

4

CN
H

CN

Tetrazole 4 Method % Yield 4

4a Aa 83
Bb 0

4b A 73

B 26

4c A 76

B 0

4d A 86
B 21

4e A 85

4f A 73

4g A 81

4h A 77
Cc 0

rt 16 h, then reflux 8 h.2
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2b–d were repeated without pyridine. When the conversion of the
nicotinamide 2b to tetrazole 4b was attempted without pyridine,
product was isolated but the yield was dramatically reduced
(26%, Table 2, entry 2, method B) compared to the identical reac-
tion with pyridine (73%, Table 2, entry 2, method A).12 Attempted
conversion of amide 3c to tetrazole 4c without pyridine produced
no desired product and completely decomposed starting amide 3c
(Table 2, entry 3, method B).12 When amide 2d was subjected to
the reaction without pyridine, unreacted 2d was recovered (11%)
and product tetrazole 4d was isolated in significantly reduced yield
(21%, Table 2, entry 4, method B).12 The presence of pyridine pre-
sumably had a protective effect for acid sensitive functionality by
sequestering hydrogen chloride generated during imidoyl chloride
formation.

The synthesis of cyanoethyl tetrazoles possessing acid sensitive
functionality (Boc-protected amines)13 has been reported under
Mitsunobu-like conditions (diethylazodicarboxylate, triphenyl-
phosphine, azidotrimethylsilane).2 However, this methodology
can fail in sterically demanding systems. For example, when this
synthetic sequence was applied to cyanoethyl amide 2h, no desired
product was detected at ambient or elevated temperature as ana-
lyzed by HPLC and LC–MS (Table 2, entry 8, method C).

In summary, a mild and general method for the conversion of
cyanoethyl amides to the corresponding cyanoethyl-protected tet-
razoles has been described. This procedure differs from other
methods in that it employs pyridine to mitigate the negative ef-
fects of hydrogen chloride generated during imidoyl chloride for-
mation with phosphorous pentachloride. This transformation is
tolerated by a variety of functional groups, is amenable to use with
acid-sensitive functionality, and efficiently converts sterically hin-
dered amides. Furthermore, the reaction does not require hydra-
zoic acid or azide salts, and has the added advantage of being
performed in a one-pot manner.
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excess saturated aqueous sodium bicarbonate (�2 mL) was added and the
resulting mixture stirred vigorously for 15 min. The organic layer was
separated, dried over sodium sulfate, and concentrated in vacuo. The
resulting residue was purified via flash chromatography (SiO2, 0–100% ethyl
acetate/hexanes) to furnish tetrazole 4a (149 mg, 83%) as a colorless oil: 1H
NMR (400 MHz, CDCl3): d = 7.68 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 4.81
(s, 2H), 4.72 (s, 2H), 4.68 (t, J = 6.9 Hz, 2H), 3.69 (t, J = 7.2 Hz, 2H), 3.14 (t,
J = 7.2 Hz, 2H), 0.97 (t, J = 8.3 Hz, 2H), 0.04 (s, 9H) . 13C NMR (100 MHz, CDCl3):
d = 154.72, 142.47, 128.96, 128.48, 121.96, 115.45, 94.43, 68.35, 65.49, 43.25,
18.51, 18.08, �1.43. LC–MS: m/z calcd for C17H26N5O2Si [M+H]+: 360.2; found:
360.5; (b) Tetrazole 4b (colorless oil): 1H NMR (400 MHz, CDCl3): d = 7.98 (d,
J = 7.7 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 4.53 (t, J = 6.3 Hz, 2H), 3.14 (t, 6.3 Hz,
2H), 2.54 (s, 3H). 13C NMR (100 MHz, CDCl3): d = 159.30, 152.63, 150.31 (q,
J = 35 Hz), 139.82, 121.66, 120.93 (q, J = 275 Hz), 118.07, 115.51, 43.18, 22.95,
18.82. LC–MS: m/z calcd for C11H10N6F3 [M+H]+: 283.1; found: 283.2; (c)
Tetrazole 4c (white solid): 1H NMR (400 MHz, CDCl3): d = 7.62 (d, J = 8.3 Hz,
2H), 7.52 (d, 8.3 Hz, 2H), 5.13 (t, J = 4.7 Hz, 1H), 4.68 (t, J = 7.2 Hz, 2H), 3.99–
3.84 (m, 4H), 3.13 (t, J = 7.2 Hz, 2H), 3.08 (d, J = 4.4 Hz, 2H). 13C NMR (100 MHz,
CDCl3): d = 154.82, 140.45, 131.04, 128.74, 121.10, 115.48, 103.84, 65.05,
43.23, 40.52, 18.48. LC–MS: m/z calcd for C14H16N5O2 [M+H]+: 286.1; found:
286.4; (d) Tetrazole 4d (white solid): 1H NMR (400 MHz, CDCl3): d = 7.65 (d,
J = 8.2 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 5.04 (br s, 1H), 4.67 (t, J = 6.9 Hz, 2H),
4.43 (d, J = 6.1 Hz, 2H), 3.14 (t, J = 6.9 Hz, 2H), 1.48 (s, 9H). 13C NMR (100 MHz,
CDCl3): d = 155.96, 154.67, 143.41, 129.09, 128.13, 121.63, 115.55, 79.88,
44.04, 43.23, 28.33, 18.46. LC–MS: m/z calcd for C16H21N6O2 [M+H]+: 329.2;
found: 329.4; (e) Tetrazole 4e (white solid): 1H NMR (400 MHz, CDCl3):
d = 7.34–7.30 (m, 2H), 7.24–7.20 (m, 2H), 4.49–4.33 (m, 2H), 3.74 (d, J = 9.6 Hz,
1H), 2.99–2.91 (m, 1H), 2.81–2.66 (m, 2H), 1.05 (d, J = 6.6 Hz, 3H), 0.88 (d,
J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3): d = 156.56, 136.12, 134.06, 129.68,
129.41, 115.62, 48.28, 42.34, 33.08, 21.57, 20.50, 18.40. LC–MS: m/z calcd for
C14H17N5Cl [M+H]+: 290.1; found: 290.3; (f) Tetrazole 4f (white solid): 1H NMR
(400 MHz, CDCl3): d = 7.12 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 9.3 Hz, 2H), 4.07 (t,
J = 7.4 Hz, 2H), 3.81 (s, 3H), 2.53–2.44 (m, 2H), 2.38 (t, J = 7.4 Hz, 2H), 2.20–2.08
(m, 2H), 1.76–1.61 (m, 5H), 1.50–1.38 (m, 1H). 13C NMR (100 MHz, CDCl3):
d = 159.83, 158.84, 135.01, 127.42, 25.44, 22.48, 17.27. LC–MS: m/z calcd for
C17H22N5O [M+H]+: 312.2; found: 312.2; (g) Tetrazole 4g (white solid): 1H NMR
(400 MHz, DMSO-d6): d = 8.17 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 4.88 (t,
J = 6.3 Hz, 2H), 3.22 (t, J = 6.3 Hz, 2H), 2.30–2.24 (m, 2H), 2.23–2.20 (m, 2H),
2.15–2.08 (m, 4H), 2.06–1.98 (m, 2H), 1.95–1.87 (m, 2H), 1.86–1.79 (m. 1H),
1.78–1.71 (m, 1H). 13C NMR (100 MHz, DMSO-d6): d = 160.01, 157.32, 145.66,
126.54, 123.27, 117.94, 44.04, 43.89, 50.40, 38.12, 37.06, 34.27, 28.02, 18.26 .
LC–MS: m/z calcd for C20H23N6O2 [M+H]+: 379.2; found: 379.3; (h) Tetrazole
(white solid) 4h: 1H NMR (400 MHz, CDCl3): d = 7.38 (d, J = 8.8 Hz, 2H), 7.10 (d,
J = 8.3 Hz, 2H), 3.95 (t, J = 7.2 Hz, 2H), 2.78 (t, J = 6.9 Hz, 2H), 1.86 (s, 6H). 13C
NMR (100 MHz, CDCl3): d = 160.66, 142.17, 134.02, 129.72, 126.96, 115.38,
43.45, 38.45, 28.86, 17.45. LC–MS: m/z calcd for C13H15N5Cl [M+H]+: 276.1;
found: 276.1; (i) Tetrazole 6 (colorless oil): 1H NMR (400 MHz, CDCl3): d = 7.70
(d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 4.69 (t, J = 6.5 Hz, 2H), 4.67 (s, 2H),
3.15 (t, J = 6.9 Hz, 2H). 13C NMR (100 MHz, CDCl3): d = 154.46, 141.36, 129.62,
129.34, 122.87, 115.45, 45.05, 43.33, 18.56. LC–MS: m/z calcd for C11H11N5Cl
[M+H]+: 248.1; found: 248.1.

11. In an attempt to limit the potential formation of hydrazoic acid during work-
up, the reactions were quenched with aqueous sodium bicarbonate.
Throughout the course of this study it was found that a freshly prepared
solution of sodium bicarbonate (pH �8) was optimal to work up the reactions.
Sodium bicarbonate solution becomes more basic over time (to pH �10),
which can lead to partial cleavage of the cyanoethyl-protecting group (5–10%).

12. Numerous unidentified species were observed via HPLC and LC–MS analysis.
13. Hernandez, A. S.; Cheng, P. T. W.; Musial, C. M.; Swartz, S. G.; George, R. J.;

Grover, G.; Slusarchyk, D.; Seethala, R. K.; Smith, M.; Dickinson, K.; Giupponi,
L.; Longhi, D. A.; Flynn, N.; Murphy, B. J.; Gordon, D. A.; Biller, S. A.; Robl, J. A.;
Tino, J. A. Bioorg. Med. Chem. Lett. 2007, 17, 5928.
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